

For patients with hereditary antithrombin deficiency (hATd)

The right replacement—AT—the right time

Venous thromboembolism (VTE) impacts thousands of patients each year

Approximately 900,000 VTE events occur annually in the United States¹

- Approximately 50% of VTE events are associated with a recent hospital admission²
- Only 40% to 50% of medical patients receive adequate thromboprophylaxis³

At least 1/3 of VTE cases are associated with inherited thrombophilia4

Of all inherited thrombophilias, hATd presents patients with the highest thrombotic risk factors⁵

- hATd is frequently undiagnosed, affecting almost 700,000 people in the US⁵⁻⁷
- 85% of patients with hATd will have at least 1 thrombotic episode by age 50⁸
- Close to 70% of these patients will have an event before age 358

Trusted for more than 30 years¹⁰

Safe & effective10

- Proven effective in treating and preventing thromboembolism in patients with hATd
- No reports of thrombotic complications during obstetrical and surgical procedures in Grifols clinical trials

Lower volume¹⁰⁻¹²

- Delivers 50× more AT than the same volume of fresh frozen plasma (FFP)
- Keeps volume load to a minimum
- · No additional proteins and factors

*Additional expenses associated with FFP may include overhead, transportation, defrosting time, and adverse event monitoring.

Convenient¹⁰

- Accurate dosing that directly replaces the AT that's missing
- Rapid preparation when you need it most—before, during, or after surgery
- Conveniently stored at room temperature no thawing required
- · Can be used regardless of ABO status

Cost-effective¹²

 May be a cost-effective and timely option compared to FFP when considering administration, preparation, and additional expenses*

> Learn more at Thrombate.com

Important Safety Information

THROMBATE III® (antithrombin III [human]) is indicated in patients with hereditary antithrombin deficiency for treatment and prevention of thromboembolism and for prevention of perioperative and peripartum thromboembolism.

Hypersensitivity reactions may occur. Should evidence of an acute hypersensitivity reaction be observed, promptly interrupt the infusion and begin appropriate treatment.

Because THROMBATE III is made from human blood, it may carry a risk of transmitting infectious agents, eg, viruses, the variant Creutzfeldt-Jakob disease (vCJD) agent, and, theoretically, the Creutzfeldt-Jakob disease (CJD) agent. There is also the possibility that unknown infectious agents may be present in the product.

Perform coagulation tests to avoid excessive or insufficient anticoagulation and monitor for bleeding or thrombosis. Measure functional plasma AT levels with amidolytic or clotting assays; do not use immunoassays.

In clinical studies, the most common adverse reactions (≥5% of subjects) were dizziness, chest discomfort, nausea, dysqeusia, and pain (cramps).

The anticoagulant effect of heparin is enhanced by concurrent treatment with THROMBATE III in patients with hereditary AT deficiency. Thus, in order to avoid bleeding, the dosage of heparin (or low molecular weight heparin) may need to be reduced during treatment with THROMBATE III.

Please see full <u>Prescribing Information</u> for THROMBATE III.

References: 1. Centers for Disease Control and Prevention. Impact of blood clots on the United States infographic. 2024. Accessed April 10, 2025. https://www.cdc.gov/blood-clots/toolkit/impact-of-blood-clots.html. 2. Heit JA, Crusan DJ, Ashrani AA, Petterson TM, Bailey KR. Effect of a near-universal hospitalization-based prophylaxis regimen on annual number of venous thromboembolism events in the US. Blood. 2017;130(2):109-114. 3. Benjamin MW, Koomson A, Ismaiel H. Analysis of adherence to thromboprophylaxis and incidence of venous thromboembolism after lower limb orthopaedic surgery. Cureus. 2021;13(11): e19746. 4. Middeldorp S, Nieuwlaat R, Kreuziger LB, et al. American Society of Hematology 2023 guidelines for management of venous thromboembolism: thrombophila testing. Blood Adv. 2023;7(22):7101-7138. 5. Patnaik MM, Moll S, Inherited antithrombin deficiency: a review. Haemophilia. 2008;14(6):1229-1239. 6. Tait RC, Walker ID, Perry DJ, et al. Prevalence of antithrombin deficiency in the healthy population. Br J Haematol. 1994;87(1):106-112.7. US Census Bureau, Population Division. US and world population clock. Accessed April 10, 2025. http://www.census.gov/popclock/. 8. Kottke-Marchant K, Duncan A. Antithrombin deficiency: issues in laboratory diagnosis. Arch Pathol Lab Med. 2002;126(11):1326-1336. 9. Bucciarelli P, Passamonti SM, Biguzzi E, et al. Low borderline plasma levels of antithrombin, protein C and protein S are risk factors for venous thromboembolism. J Thromb Haemost. 2012;10(9):1783-1791. 10. THROMBATE III® (antithrombin III [human]) Prescribing Information. Grifols. 11. AABB, American Red Cross, America's Blood Centers, Armed Services Blood Program. Circular of information for the use of human blood and blood components. June 2024. Accessed April 10, 2025. https://www.aabb.org/docs/default-sources/circular-of-information-watermark.pdf?sfvrsn=7f5d28ab_5. 12. Rodgers GM, Mahajerin A. Antithrombin therapy: current state and future outlook. Clin Appl Thromb Hemost. 2023;29:10760296231158585.

